Induced Antiferroelectric Phases in Multicomponent Systems^{*}

by R. Dąbrowski¹, J.M. Otón², V. Urruchi², J.L. Gayo², K. Czupryński¹ and S. Gauza¹

¹Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland ²Universidad Politécnica de Madrid, 28040 Madrid, Spain

(Received June 25th, 2001; revised manuscript October 8th, 2001)

Keywords: ec c^h u dc al, u ceda cl c ec c ^h a e, a fe elec c, elec c e e f u ceda fe elec c

The d c e f a e h e h ld a fe elec c h u d c al a d h e $V - {}^{h}_{1} a ed ({}^{h}_{1} e {}^{h}_{1} ldle) w c^{h} ec c b Fi u da' ea (ee e ew a e$ [1,2]) all wed he de fd la ha ed ew a lead e le el c^haace c.S wa clea ^he ece fut he each few led eccae al ba eae a e f e e, ^ka^ke a e al culdbe be e ada ed diffe e a l ca . Rece l e fu be ed ^ka a a cl c (a fe elec c) S $C_A^* LC^{\mathbf{h}}$ a e a be **u** ced b c e e, ced ula eul fachalcudwhafil aede al cha a dach alc u dwha aede alcha [3,4]. Th e al e a fe elec cS C_A^* u e f Чe bl ff ula ulc udha cl cadh al ecc^hae. Sic^h bl с wa whhe.

I^kw, ^keelec - calc^ka ace a d a cad acc d e fulceda fe elec culc f u e e e ed. The e W e ad^ke ec d ec a u ec a e ce f**û** aedc f a ed c e . T^he a wa f ba uf da e al f a e ce abu ^he elec - calbeha u a d ec e^ke e alu eufle la a l ca d

^{*}Ded ca ed ${}^{\mathbf{k}}_{\mathbf{l}}$ e e f P fe K f P $\cdot \boldsymbol{a}$.

EXPERIMENTAL

 P^h a e a a e e °C, a d a e h^h al e cal/ l (*italic*).

The aedce haehefllw uoveadhaea :

fe $e^{h}d$. C $u d7^{h}a = ccl_{A}^{*}a dA^{h}a e a dw u b^{h}a e C_{\alpha}^{*}a dC_{\beta}^{*}$. The c u dwa e ed[10] $ha^{h}a S C^{*}haeb = a e ea e wee e e^{h}ee$. Twe eccc -

we ecalu la eda d e a ed: **B** ec c B c edc **u** d 4 a d 5 ^h ea **u** 47.23 w.% f4 a d52.77 w.% f5 ^h wed ^h e ^h a e a :C 70°CS A 120°CI a d c all edu c l a 35°C. **B** ec c C c a edc **u** d 4,5,6,7 a d 8 w ^h we ^h ece a e 13.99,9.27, 38.22,18.52 a d20.0 e ec el .T^h e ^h a e a f **u** eC we e:C 14 15°CS C^{*}_β55°CS A 84 101°CI .I c all eda abu 4 5°C. T^h e ec c S I^{*}_A wa be ed ^h ee **u** e. T^h e e e au ea de ^h al f ^h a e a f d **u** alc **u** d we e eau edb a SETARAM 141 DSC cal ee. P^h a eda a fA-Ba d1-C e we e ba edb ^h e lec ce a e^h d*via* we ^h a e a aed a le fabu 0.02 f eac^h c ce a . T^h e e **au** e f ^h a e a we e eau edw ^h a LINKAM THMS 600^h a e a da BIOLAR PZO la

cal c c e. $P^{k_1}a$ e we e de fed b c c c b e a . \textcircled{T}^{u} d c al u e we e laced be wee k_1 c c e la e w ${}^{k_1}u$ ace .

Cell preparation and electro-optical characterization. T^heelec - cal (EO) e e f e a ed a e al we c^ha a ce edb e fe e e .S a ca^Atu a - a cb^{eh}a u a d ffe e e e au e di ded^half c ea le be wee fe elec c(+) a d() a e, elec - cal e e (cal^h e e u e) a 1 H a u la wa ef , c a a a d ^h e ^h 1 d 1 a e.D a c be^ha u di ded e e(ea dfall) e, e calea dd a cc a a .F ^hee e e e , ^he cell we ed e e ^h e b le la al e a ⁿu a eu l e b al ed wa ef ec f call de el ed f a fe elec c a d V-^ha ed a e al [11]. Cell a be wee 1.6 1.9 we eu ed. N l -6 (Ald c^h) wa u ed a al e a e al u f 2,2,2,c^h l e^ha l w ^h ^h ed ffe e c ce a (/l): 7.20, 14.4, 21.6 (^he e f al e deeda e, aa d fe ec el f ^heec ce a). T^heal e ^hebe EO e ea l w e e au e fd a cadde , w^h le ee afteu a ec a wa elec ed f eac^h u e. Gi ewa alwa 4^h a 160°C. T^heal e la e we ede edb a e e au e. T^he e edwa 3500 all ca e.S ewa 30,40,a d50 f la e e, a, a d fe ec el . Pla a a allel (↑↑) al e wau ed all ca e.

RESULTS AND DISCUSSION

Phase transitions in multicomponent systems A-B and **1-C**. T^he ^ha e da a f ^he e c ed f fil a ed u e A a d a ed u e B ^h w F u e 1. T^he ^ha e da a f ^he e c ed f c u d 1 a d a ed u e C ^h w F u e 2.

 T^h e a le wee laced be wee c c c l de w h u e la e a d ace. T^h e l we e eau e fc all a A-B u e wee fu d h e a e f^h h e c ce a f fl a ed c u d, wh le 1-C u e h e wee fu d h e a e f^h h e c ce a f a ed c u d.

T^he diceda fe elec cS C_A^* ^ha e be ed A-B e f ^hec ce a a e 20 75 w.% fB. I ^he al abl ^h ^he (abu 75°C) f c ce a 40 50 w.% fB, a ddec ea e ^ha l f ^h ^he a dl we Bc ce a . M u e A-B w ^h B c ce a be wee 20 a d 40 w.% ca be u e c led bel w e e au e. T^he ^ha e da a (F u e l) cl e ^he ^ha e da a f ^he b c e e **1** 4 de c bed [3]. H we e, ^he b-

Figure 1. P^haeda a fulc e ueA-B.Ta e eau ef^hea ccleae e.

Figure 2. $P^{\mathbf{h}_1}$ a ed a a fulc e u e 1-C. Ta e e au e f $^{\mathbf{h}_1}$ ea c cle a e e . B e l e f S C_A^r a f c l added.

e ed a u fS C_A^* ha ewa 120°C ha ca e. The d ced S C_A^* ha e b e ed he 1-C e a c ce a 20 85 w.% fC. The ha ee a e e au e a h ha 100°C (Fu e 2). The al ab l l weal de e de c ce a w h he a e 25 70% w. fC; h we e deceae a dl u de h a e. M u e A-B c a 70 w.% ft a ed c e A a d 30 w.% f a ed c e B, (a ed a W-119 u e) a d u e 1-C c a 15 w.% ft a ed c u d 1 a d 85 w.% f a ed u e C (a eda W-131) we e elec ed f uf ${}^{h}e$ h cal a delec - cal u de. D c l ${}^{h}e$ u e W-119 h wed ${}^{h}ef ll w$ ${}^{h}ae a$: C 13°C S C_A^{*} 61.5°C S C_B^{*} 90.5°C S A 109 125.6°C I ; t ${}^{h}ea$ u e W-119 ${}^{h}e$ a S C_A^{*} \rightarrow S C_B^{*} wa be eda h ${}^{h}e$ e e au e (66.5°C). M u e W-119 wa d ed w ${}^{h}ac{}^{h}alc$ u d9 ${}^{h}ea$ u f20 w.% w ${}^{h}c$ u d 10 11 12 e a a el ${}^{h}ea$ u 10 w.%. The eu l u e we e called W-119a, b, c, a dd e ec el.

I u e W-119a, badc, h_a II h_ea cl cS C_A^* h_a e, ab h_e e e f h_e al abl wa be edul c c c be a . Si ch beha - u wa be edal bc e e ad ee beachaace c feau e f h_e di ceda cl c $h_a e [3,4]$.

M u e W-119a, b, c a d d ${}^{\mathbf{k}_{1}}$ wed ${}^{\mathbf{k}_{1}}$ e f ll w ${}^{\mathbf{k}_{1}}$ a e ${}^{\mathbf{n}_{2}}$ e u e c e d c l-(\leftarrow) a d ${}^{\mathbf{k}_{1}}$ e a (\rightarrow):

Mue	Phae a /°C
W-119a	C $\frac{1}{4}$ S C [*] _A $\frac{57.3}{65}$ (65) S C [*] _b $\frac{36}{86}$ S A 100 I
W-119b	C 10 S C_{A}^{*} 45 (56.6) S C_{β}^{*} 82 S A $94-117$ I
W-119c	C $\overline{0S}$ C [*] _A $\overline{44}$ (54) S C [*] _B $\overline{90.5S}$ A $106-123$ I
W-119d	C 15 S C_{β}^{*} 93.7 S A 108-127 I

 $T^{\mathbf{h}_{1}}ed a = \mathbf{9}, \mathbf{10}, \mathbf{11}, \mathbf{12} dec ea e^{\mathbf{h}_{1}}e^{-ab \mathbf{l}} f S C_{A}^{*} {}^{\mathbf{h}_{1}}a e^{-\mathbf{u}} e W$ -119 ${}^{\mathbf{h}_{2}}ef \mathbf{l} W = Wa :$

12 > 11 > 10 > 9

 $\begin{array}{ccccccc} T^{h}eac^{h} & ale & e & 12, {}^{h}a & a & led & ec & cC & {}^{h}a & e, u & e & ed & {}^{h}ea & fe & elec & c \\ {}^{h}a & e & u & eW-119a & c & ce & a & ab & e5 & W. & \%, & w^{h} & le & he & fi & a & ede & e & 9 \\ {}^{h}wedal & & fl & e & ce & {}^{h}e & ab & l & f & {}^{h}h & {}^{h}a & ee & e & a & c & ce & a & u \\ 20 & w. & \%. & I & a & ed & a & l & u & e & 10 & dec & ea & ed & {}^{h}e & ab & l & f & S & C_{A}^{*} & u & c^{h}h & e, \end{array}$

eal he a ewa a de11dd, e adle c u d10ha l h al ec cA ha ewh he l w clea , while 11ha he led ha e C. The u eW-131had ha e a : C 7S C_A^* 37 (52) S C_β^* 70 S A 95-110 I .

Figure 3. Half-c ea lebe wee (+) a d() fe elec c ae f u e 119 a dW-13 u e e au e. Cell 1.8 ; a u la 1 H wa ef a led.

Figure 4. Half-c ea lebewee (+)ad(-)fe elec c ae f u e 119a, b, caddu e - e au e.

W-119 $a^h h i$ u e. The a u i a le (abu 42°) ach e eda 30 deeebel whe a S A hae. The h i bel whe S A-S C^{*} a chaace c f u e c a ala ea u fcha fi aed c e [6,12]. I Fu e 3 hed f he i a le θ e al e wa be ed d eci ab e he a e eau eS C^{*}_β-S A, fu db c c e be a - e ed a le b a a^h he e e au e. Th ee beachaace c feau e f^h e a e al . I wa al be ed he u u e. The ea f h d a bef II w ÷ a elec ci ceffec – a a c^h f leu le heu face a e h cell (1.8), wh ch e he i ed hae a^h he e e au e e.

M u e	Te e av e/°C	θ / \circ
W-119	60.5	42
W-119a	56	39.5
W-119b	52	31
W-119c	60.6	40
W-119d	63.7	36
W-131	40	26

Table 1. $T^{\mathbf{k}_1}e$ Iale \mathbf{k}_1e aaaaA-SC*.

The effec fd a hehalf-c ea le fhe u eW-119 l wf d a 9, 11 a d 12. D a 10 u ce a ceable dec ea e fhe l (Table 1). Th babl ac the ece fheabe ce fa led ec cC hae d a 10. *Temperature dependence of electro-optical transmission profile and response times*. The elec - cal (EO) beha u fheab e- e ed u e ha bee u dedu e cell au facu ed a h w bef e. Fu e 5 h w he EO ee f u e W-119 a d W-131 a 1 H a u la wa ef . The EO ee f u e W-119a, b, ca dd he a ewa ef h w Fu e 6. U le he w e a ed, he cell h c e wa 1.8 all ca e . M u eW-119e he able a fe elec c a ea he e e au e bel w 55°C a d h w V-ha ed elec - cal e ew h a all he e i be wee e i a e a dhe au a i a e. The au a i a e h ha i we e au e (20 V 12V/ a 30°C), a ddec ea e w h cea e (W-ha e), wh ch e ceabl a

Figure 6. C a felec - calu e f u e : 119, 119a, b, c a d d a e e al e e au e.

u eW-131 ^h w a cal^h ee **u** e f aea fe elec c ae al w ^h a e b ad^h ee l ,a 40°CV_h = 14Va dV_a = 17V. T^h e e e e a f S C^{*}_b S C^{*}_A a aal w la e(^h ld a V_h = 8V) a df ^h e ea l a V=0V. T^h e^h lda d au a la e dec ea ew ^h cea e eau e a ^h e^h ee l a we. T^h e^h a e f^h e^h ee **u** e a a edu 55°C, w^h ee S C^{*}_A a d S C^{*}_b ^h ae a e a ^oeu lbu . S ^h u e^h a V-^h a ed w c^h bel w S C^{*}_b → S C^{*}_A a a dal S C^{*}_b ^h a e.

D a 9 12 affec^h eEO e e d ffe e wa (Fu e6). Thed a 12 ha helea effec elec - cal e e. The and a la ef W-119d e e h he ha be ed h u eW-119 ad he a f a f V-ha ed W-ha ed cha ace c a a al we e ean e(45°C). A h w, h u ereu ed ah he c ce a fb ff a e al (fu facec d , ee Table 2) ab l e he V-ha ea l we e an e. Th lead a e a ch wha cu ld a all e la h beha u. D a 9 ad 11 (u e W-119a ad W-119c) e l e he EO e ef V-ha ed W-ha ed al ead a al we e e an ea d he an a la e effec el dec ea ed. The effec ee de u eW-119a ha W-119c, b he c ce a f he d a W-119a w e h he ha W-119c, ce he ce a f he d a W-119a w e h he ha W-119c, b he c ce a f he d a W-119b c a h d a h w a e eu la flea h he e eau e W-119b c a h d a h w a e eu la flea h he e eau e W-119b c le e f u e W-119b cu ld be ab l ed w ha

e edu face c d .

Contrast and grey scale. T^hi e de e de ce f^hi e a cc a a w^hi e eau e c a ed f u e W-119 a d W-131 F u e 7 a d f u e W-119a, b, c a d d F u e 8. M u e W-119 c a abu e ^hi e ^hi ^he ^hi a u e W-131 (*e.g.*, 70:1 a d 9:1 e ec el a 35°C). T^hi e u e W-119

Figure 7. Te e a^{μ} e de e de ce f^hec a a f f u e : W-119 a d W-131.

Figure 8. Te e a e de e de ce f^he c a a f f u e : W-119a, b, c a d d.

 h_{W} a u c a abu 100:1 a 65°C, where $h_{e}h_{h}h_{e}$ If h_{h} u e al be ed. D b ach alc u d deceae $h_{h}ec$ a . The d ed u e W-119d h a h ec a a d e e an e de e de ce h e la $h_{e}h_{h}$ u e W-119.

Fu e9^h w ^hede e de ce f^hed a c e cale ^hea led la e hehldle ue W-119, W-119a, b, c, dad hehld ue W-131 ad he chaace cd aa ee ael ed Table 2. D a df fcal^he¹ e f^hed a c e cale^u e. D a 12 deceae de ael^he ee e f^he^h u eW-119 ad ceae ^he av a lae a e.D a 11 a de ecall 9 da call ceae^he ee e a detdce^he ava lae. Aa ^heaa u facec d - ^hece ac^h - a c be ^heeeul. I ^huldbec deed, ^h wee, ^hadffee bff c d ^ha e bee u ed de e ^he l w-e e au e V-^ha e e, *i.e.*, ^he ee EO aa ee f ^hea 1 ca f ew. U Oeu colde, heefe, had a 11 ad 9, bhe ele ad/huh he ubff cd , dcelwlaeV-haee e:heee fW-119a a u la l e e h c e , f d a c a e c a ble w h l w l a e a da d d elec c . The u e W-131 c a V-h a e u e W-119 h w a e beha u w h adu ble e e e ladeedah he laef wich f hea fe elec c he fe elec c a e a d a l we c a b a ed.

f e cale f^li e^{li} Idle **u** e : W-119, W-119a, b, c, da d^{**h**} e ^{**h**} Id -Figure 9. C а **u** eW-131 a e eau e 35°C.

Table 2. D	а	ca d	a c	e e	fhe	e	a ed	u	e	а	35°C	2.
------------	---	------	-----	-----	-----	---	------	---	---	---	------	----

	W-119	W-119a	W-119b	W-119c	W-119d	W-131
Cell a []	1.8	1.7	1.8	1.9	1.6	1.8
Tefale	а	e	а	а	f	а
Sacc a a	55:1	34:1	17:1	55:1	46:1	9:1
Half-a le $(+,)$ be wee	40.4	39.5	32	39	38.3	26
fe elec c a e						
Sau a ule[V/µ]	14.1	8.2	()	10.6	21.7	7.3*
Well lae[V/][11]	5.1	4.8	()	4.8	8.6	19.2
$T^{\mathbf{h}} e^{\mathbf{h}} \mathbf{l} \mathbf{d} \mathbf{l} a e V_{10} [V]$	4.5	1	()	3.2	5.4	42.5
Satisfield a la e V_{90} [V]	16.2	4.4	()	12.4	19.5	48.7
DacaeV[V]	11.7	3.4	()	9.2	14.1	6.1
Daccaa $(\neq)^1$	40:1	25:1	()	40:1	33:1	7:1
R e e $()^{2,3}$	255	100	380	155	80	55
Fall $e()^{2,3}$	280	690	1300	185	160	4800
O cal a fle	V- ^I ∎a ed	V- [¶] a ed	V- [¶] a ed	V- [¶] a ed	V- [№] a ed	h eh ld
Нее	all	all	eu la	all	all	la e

a d def

a e AFLC .

e be wee ad ace **u l** e. e a d e e e. The diced ecca fe elec $c(S C_A^*)$ haee la ecce a a e fulc e u e, c fh eead w ch ale e w h a all fi a ed e al al cha, a dhe al la dal a al u e w h all cab a he e al a ed cha. I a u ab l be ed hecce a a ffi a ed a ed c e abu 1:1, wha la hebeha u fu d e u l f bc e u e [3,4]. Si ch di ced a fe elec c u l c e u e a al c a c e ha a e able di cehea fe elec c haeb he el e. D a a be w ch al c u d a well a ach al e. The eece fd a all w dee cha e fhe e e f u e c ed fhee c u d, ha led eccae al w h e e fu ed ffee ha heh ae al (a d e eff l f d la a l ca) a be f u la ed. Tw e f d ced a fe elec c u e fc ce a f he a e, whee he hae a

a fe elec c u e fc ce a f hea e, whee he hae a a e, we e e a eda d e a ed. B ch ch ce hu ld ceaea e wh a d ec c C_A^* hae, wh ch he alf V-haed w ch a Fiu da u e ed [2], alh u h ece l h f ew u e ed [13]. O l he f e, W-119, wh a e ce we h f fi a ed c u d, h wed V-ha ed w ch . The an a lae wa fu d be llh h (Table 2), alh u h he b e ed e cale wa u e w de.

Rece I we e aed u e c a I he fi aed c u d a dfu dV-ha ed w ch w hal wan a Ia e [14]. The effe, wu id be bleal he ti ced u e de c bedhe e. Al we and a Ia e a be ba ed bable I e fi aed c e . The u e W-119 h w a ahe d a c (55:1) a dd a c (40:1) c a a well a ea I e cal ea ddeca e a acce able a e fabu 250 . The ec d u e (W-131) hau ed ffe e e e. I h w ha b h, h e h ida d an a Ia e a ew h cal a fe elec c a e al . A w deh ee be ed be wee he a fe elec c -> fe elec c a a d he fe elec c \rightarrow a fe elec c a . I babl c c da w h he b e a ha he ec cC_A^* a dS C_B^* ha e a e I wi eu i b a ed Ia e e ea e ad c ce a a e, whee he ec cC_A^* ti ced [3]. The a e eu i f he a al f w ch e wee b a ed. The e e h effu eW-131, wh le he fall e h ded e Ia e, a he a e al i wi ela e he a fe elec c a ae fe elec c feld e ed.

O heea le f u eW-119 he file ce fach ale e d e ed a wee e aedad wa fu dha he aeable cha ehe e e fheh u e a e a e a e e e, wha c elaedwh he che cal u ou e a dha e u a fhed a a dhe file ce hea ch e heu V-ha ed w ch (Table 2).

Theach ale e 12 deceae hee e e eeffec el ha hed a ; while d ed a 11 deceae le hee e e. The deceae fhe h e h ld la eadhe an a la e be edf h d a a dV-ha ed w ch a f ed heW-ha ed w ch , b hec a be ed laih ha heh u e. The fi aede e 9 eti ce da call he heh Idadatu a lae.

The cell fab ca c l la a a le hef al EO e e. The file ce fu facec d he ha e felec - calue eadd a c beha u wa be ed he w [15]. E ec all, heu face e f a e al w h V-ha ed w ch cha ace c. I le e al ae e aa el hec b ed ac f heu face a d he a e al elf. A a ae, eu l a f ed c b a u face/ ae al, l e h e ch e f a al h w , e he ele a f a f a l ca a a h f wad wa.

I ee $e^{\frac{h}{h}a - V - \frac{h}{h}a}$ ed w $c^{\frac{h}{h}}$ ee bet ela ed $\frac{h}{h}e$ e e ce f ec cC_A^{*} $\frac{h}{h}a$ e. Nea l $\frac{h}{h}e$ a e d felec - cal $c^{\frac{h}{h}}a$ ace c be ed u eW-119, w $\frac{h}{h}$ $\frac{h}{h}e$ a e f ec cC_A^{*} $\frac{h}{h}a$ ee e ce, a d d fed u cce W-119d, w $\frac{h}{h}e$ e l ec cC $\frac{h}{h}a$ e e e e a l w e e at e.

Fil a ed c u d a e a e a le f che cal u ou e, whe e V-h a ed w ch cu e f eu e l. Thef V-h a ed a e al, M u a d M u b h u e [2], al h a e a fil a ed f a e (h e CF₃ u), b l ca ed h e e h bu h d f h e ch al ce e. O h e h e h a d, h e la f w ch-W-119 a d W-119d u e u , c de h e ece a d a c c d f h e e e ed a f fe elec c a fe elec c h a e. Rece l, No du *et al.* de a ed h a h e a f h e a fe elec c fe elec c h e h ld a ewa b e ed l a h ef c cle f a led elec c feld [13]. I d a c c d l h e a f (+) fe elec c a e () fe elec c a e eal ed. The ef e, h e b e ed a h e W-119 a d W-119d h a e h e a e an ea da c e h e elec-

- cale e a e ^li e a e.

 T^{h} ef u la f^hea fe elec c^ha eb tic e able e ba a a e f a e al w^h d la e e f^he a e c e u c^ha ^he ela e c ce a .

Conclusions. $T^{\mathbf{k}_{1}}$ e ae al f u la ed b ul c ec^ka f c^kal ec cCad ec cAc u d aⁿeu e falca . Fi ^ke eul c f la ef V-^ka e w c^kh ^ku ld be ba ed. O e f^kewa cu ld be a ceae f^kec e ful a ed c u d ^ke u e a well a ^ke

fa aedd a .A e a c u d f^he file ce f d a d c Чa d ffee c^he caluou e a ea be ece a .

Ac wled e

f ^hePl^hSaeC eef Sce fcReeac^h (a N 3T09A 073 15) a d F a c alu a ded de Mad d (S a) ec . 07T/0038/2000 a e a esf ll ac wled ed. С

REFERENCES

- 1. **F** u da A., Ta a ^k, Y., I a T., I^k, awa K. a d Ta e e H., J. Mat. Chem., 4, 997 (1994).
- 2. Mau a T., Fiuda A., J^h, M., M a a Y., W T., Se u S.S. a d Ya a^h, a M., *J. Mat.* Chem., 9, 2051 (1999).
- 3. Gu a S., Cu 🛹 K., D b w R., Ku c 🖉 W., G c F. a d Ke K., Mol. Cryst. Liq. Cryst., 351, 287 (2000).
- 4. Gu a S., Cu ... K., D b w R., Ki c ... W. a d P c ech a D., Mol. Cryst. Liq. Cryst., (2001 е).
- W., Cu ... K., D b w R. a d Ne be M., *Mol. Cryst. Liq. Cryst.*, **328**, 401 (1999). J., D b w R., Cu ... K. a d D ew. W., *Biul. WAT*, **59**, (8), 19 (2000). 5.D ew₄
- 6.P ed
- 7. D b w R., Ferroelectrics, 243, 1 (2000).
- 8. Na waJ., Pe w P., Kde J., Raew Z., Db w R., GuaS., Cu 🛷 K. ad Mec E., *SPIE*, **4147**, 101 (2000).
- 9. Dew. W., Dbw R., Raew Z., Raw a J., Net be M. ad Kea S., Mol. Cryst. Liq. Cryst., 301, 195 (1997).
- 10.K ba a^{lı}ı I., Ha^{lı}ı S., Su Y., Ya a T., Kawa u c^h S., I a e T., Te ada M. a d M a K., Mol. Cryst. Liq. Cryst., 328, 131 (1999).
- 11. Q a a X., Ga J.L., R d C., Uu c^h V. a d O J.M., Ferroelectrics, 246, 211 (2000).
- 12. D⁴ a K., Da^h I e A., M^{*}du P., La e wall J.P.F., A de G., Mau c M., La e wall S.T., D b w R. a d D ew W., Ferroelectrics, 244, 115 (2000).
- 13. R¹⁰du P., La e wall J.P.F., B da M. a d Gu da F., et al., J. Mater. Chem., 9, 1257 (1999).
- 14. D b w R., D ew. W., Cu '. K., Gu a S., Ke K., Ni c '. W. a d G c F., Mol. Cryst. Liq. Cryst., (2001 е).
- 15. Cha da A.D.L., @Y., Se u S.S., Ta a Y., Ih awa K., Ta a e H. a d B u da A., Liq. Cryst., 26, 167 (1999).